
Git intro

Obolenskiy Arseniy, Nesterov Alexander

ITLab

November 15, 2024

ITLab Git intro 1 / 26



Contents

1 What are version control systems?

2 What version control systems exist? History and evolution

3 What is Git?

4 Basic Git commands

5 Git workflows overview

ITLab Git intro 2 / 26



Version control systems

A version control system (VCS) is a software tool that helps individuals
and teams manage changes to source code, documents, and other
collections of information over time.

It is a persistent data structure (data structure that maintains its
previous versions after modifications, allowing access to both current
and past versions of the data)

This is in contrast to ephemeral data structures, where changes
overwrite the current state, losing prior versions

ITLab Git intro 3 / 26



Early Days of Computing (1950s - 1970s). SCCS

Before the development of dedicated version control systems, programmers
used manual processes to manage changes. Early systems, like the Source
Code Control System (SCCS), developed by Marc Rochkind at Bell Labs
in 1972, were among the first tools created to automate version control.
SCCS stored multiple versions of code and helped manage modifications
through change sets, allowing programmers to revert to earlier versions if
necessary.

SCCS subcommands

admin -i file.f s.file.f - Put subs under SCCS control.
get s.file.f - Retrieve, read only.
get -e s.file.f - Retrieve, read/write (e = edit).
get -p s.file.f - Retrieve, just peak.
delta s.file.f - Store changes.
prs s.file.f - List revisions.

Source:
https://sites.science.oregonstate.edu/ landaur/nacphy/coping-with-unix/node169.html

ITLab Git intro 4 / 26

https://sites.science.oregonstate.edu/~landaur/nacphy/coping-with-unix/node169.html


Centralized Version Control Systems (1980s - 1990s)

Centralized version control systems (CVCS) came to prominence during
the 1980s. These systems required a single, central server where all files
and version histories were stored. Developers had to be connected to this
server to commit changes or retrieve updates.

RCS (Revision Control System): Developed by Walter Tichy in the
early 1980s, RCS is a more advanced system than SCCS. It
introduced features like automated version numbering and handling of
concurrent edits, but it was still a single-user system.

CVS (Concurrent Versions System): Introduced in 1990, CVS
extended RCS with support for multiple developers working on the
same project. It allowed distributed teams to collaborate more
effectively, although merging changes was often difficult.

SVN (Subversion): developed as an improvement over older systems
like CVS. It was created by CollabNet in 2000 and later became an
Apache project.

ITLab Git intro 5 / 26



Distributed Version Control Systems (2000s)

The limitations of centralized systems (reliance on a single server), led to
the development of distributed version control systems (DVCS) in the
early 2000s. In DVCS, every developer has a complete copy of the project,
including its entire history, on their local machine.

BitKeeper (1998): BitKeeper was one of the first DVCS, created by
Larry McVoy. It gained fame for being used by the Linux kernel
project until a licensing dispute in 2005 led to its discontinuation in
favor of free alternatives.
Git (2005): Linus Torvalds, creator of Linux, developed Git after the
fallout with BitKeeper. Git was designed with performance, flexibility,
and speed in mind, especially for large projects like the Linux kernel.
Git introduced powerful features such as branching, merging, and
decentralized collaboration.
Mercurial (2005): Developed around the same time as Git, Mercurial
is another DVCS designed for speed and scalability. While it shares
many similarities with Git, it is known for being more user-friendly
and consistent in behavior.

ITLab Git intro 6 / 26



What is Git?

Git is a distributed version control system (DVCS) for tracking
changes in source code during software development.

Created by Linus Torvalds in 2005.

Allows multiple developers to efficiently work on the same project and
creates and environment for effective collaboration on software
project.

Key features:

Distributed architecture
Free and open source
Wide usage in the industry
Speed and efficiency
Data integrity
Support for non-linear development (parallel work on different features)
History and blame tracking

ITLab Git intro 7 / 26



Key concepts

Version control system

Repository

Commit

Branch

ITLab Git intro 8 / 26



Download Git

1 Navigate to the official Git website: https://git-scm.com/

2 Click on the Downloads section.

3 Select the appropriate version for your operating system (Windows,
macOS, Linux).

4 Follow the installation instructions provided.

ITLab Git intro 9 / 26

https://git-scm.com/


Creating a New Repository

Initialize a new Git repository in an existing directory:

Command
git init

Clone an existing repository:

Command
git clone <repository-url>

This could be the repository hosted anywhere (GitHub, GitLab or
other platforms) or local repository

ITLab Git intro 10 / 26



Commit

In Git, a commit is a fundamental unit of change. Commit has a unique
identifier (commit hash) and it holds a number of options:

Hash: unique identifier (SHA-1 checksum). This allows Git to
uniquely identify each commit in the history of the project.

Message: description (what was done in this change)

Author (name, e-mail)

ITLab Git intro 11 / 26



Commit message

Generally consists of two parts:

Subject line (summary)
Usually is short (up to 50 characters)
Imperative is used (e.g., ”Fix bug in user login” or ”Add tests for API
endpoint”).
Avoid periods at the end of the line

Body (optional)
Wrap lines at 72 characters
Explain why the change was made, rather than just what was done
(the code diff itself explains the ”what”).

Commit message example

Add caching for user profile data

This improves the performance of loading user profiles by caching the data
in memory. Previously, each request would query the database, which
caused a significant slowdown.

ITLab Git intro 12 / 26



Commit best practices

Write meaningful commit messages: Follow the rules from previous
slide. This helps others (and future you) understand the purpose of
each commit.

Make small, logical commits: Each commit should represent a single
logical change. Avoid lumping multiple unrelated changes into one
commit.

If you can split your commit into two in many cases it is better to do
this.
If your commit message contains the word ”and” this might be a signal
that commit can be split

Write meaningful commit messages: This helps others (and future
you) understand the purpose of each commit.

Commit often: Regular commits allow you to track progress and
makes it easier to revert to a stable state if something goes wrong.

ITLab Git intro 13 / 26



Commit importance

Source: https://github.com/hendrixroa/in-case-of-fire

ITLab Git intro 14 / 26

https://github.com/hendrixroa/in-case-of-fire


First Commit

Check the status of your repository:

Command
git status

Stage files for commit:
Before you make a commit, changes must be added to the staging
area using git add. This allows you to carefully select which
changes to include in a commit. For example, you might only want to
commit changes to one file, even if you’ve modified several others.

Command
git add <file>

Commit changes:

Command
git commit -m "Commit message"

ITLab Git intro 15 / 26



Branches in Git

In Git, a branch represents an independent line of development, enabling you to work on
different features, fixes, or experiments without affecting the main line of the project.
A branch is a movable pointer to a commit. It allows users to develop different project
directions in parallel.
e.g. several developers are working on several different independant features

Create a new branch:

Command
git branch <branch-name>

Switch to a branch:

Command
git checkout <branch-name>

Create and switch to a new branch:

Command
git checkout -b <branch-name>

ITLab Git intro 16 / 26



Viewing Commit History

View the commit history:

Command
git log

View a summarized commit history (one line per commit):

Command
git log --oneline

View graphical representation of branches:

Command
git log --graph --oneline --all

ITLab Git intro 17 / 26



Push to Master (Linear history approach)

All changes are made directly to the master branch.

Simplest workflow, suitable for small projects.

Potential issues:

Conflicts when multiple developers push simultaneously.
No isolation for new features or bug fixes.

ITLab Git intro 18 / 26



Using Feature Branches

Create separate branches for new features or bug fixes.

Benefits:

Isolates development work.
Facilitates code reviews.
Safe integration into master after testing.

Workflow:
1 Create a new branch: git checkout -b <feature-branch>
2 Develop and commit changes on the feature branch.
3 Merge back into master when ready.

ITLab Git intro 19 / 26



Trunk-based development

Developers commit directly to the trunk (main branch), avoiding
long-lived branches
Encourages continuous integration by integrating small changes
frequently
If branches are used, they are short-lived (usually less than a day) and
merged back quickly
Use of feature flags is encouraged and allows incomplete features to
be safely included in the main codebase
Benefits:

Reduces merge conflicts and integration problems
Simplifies version control management
Facilitates rapid release cycles and continuous deployment

Drawbacks:
Requires high discipline from developers to commit stable, working
code frequently
Feature flags can become complex to manage, especially if there are
many incomplete features
Approach is not suitable for big teams and teams working on long-term

ITLab Git intro 20 / 26



GitHub Flow

Lightweight, branch-based workflow suitable for continuous
deployment.

Steps:
1 Create a branch for your work.
2 Commit changes to your branch.
3 Open a Pull Request when your work is ready.
4 Discuss and review your code.
5 Merge the Pull Request once approved.
6 Deploy to production.

Benefits:

Emphasizes collaboration and code quality.
Organized workflow for medium projects (a team or several teams that
consist of several people).

ITLab Git intro 21 / 26



GitHub Flow

Source: https://github.com/a-a-ron/Github-Flow

ITLab Git intro 22 / 26

https://github.com/a-a-ron/Github-Flow


Git Flow

A robust branching model for managing releases.

Defines specific branches:

master - contains production-ready code.
develop - integration branch for features.
feature branches - for new features.
release branches - prepare for a new production release.
hotfix branches - quick fixes for production.

Benefits:

Organized workflow for large projects.
Clear separation of different types of work.

ITLab Git intro 23 / 26



Git Flow

ITLab Git intro 24 / 26



Thank You!

ITLab Git intro 25 / 26



References

1 Git Download https://git-scm.com/downloads

2 Git Book https://git-scm.com/book/en/v2

3 Git Flow Tutorial by Atlassian
https://www.atlassian.com/git/tutorials/comparing-
workflows/gitflow-workflow

4 Git Flow cheatsheet
https://danielkummer.github.io/git-flow-cheatsheet/

5 GitHub Flow Tutorial by GitHub
https://docs.github.com/en/get-started/using-github/github-flow

ITLab Git intro 26 / 26

https://git-scm.com/downloads
https://git-scm.com/book/en/v2
https://www.atlassian.com/git/tutorials/comparing-workflows/gitflow-workflow
https://www.atlassian.com/git/tutorials/comparing-workflows/gitflow-workflow
https://danielkummer.github.io/git-flow-cheatsheet/
https://docs.github.com/en/get-started/using-github/github-flow

	What are version control systems?
	What version control systems exist? History and evolution
	What is Git?
	Basic Git commands
	Git workflows overview

