
CMake

Obolenskiy Arseniy, Nesterov Alexander

ITLab

November 15, 2024

ITLab CMake 1 / 28

Contents

1 Building C++ projects

2 Build systems history

3 CMake

ITLab CMake 2 / 28

C++ ”Hello, World” example

Listing 1: Hello World example
1 #include <iostream >
2
3 int main() {
4 std::cout << "Hello , World!" << std::endl;
5 return 0;
6 }
7

ITLab CMake 3 / 28

Building simple main.cpp on UNIX

Open a terminal.

Navigate to the directory containing main.cpp.

Compile the program using g++:

g++ −o h e l l o main . cpp

Run the executable:

. / h e l l o

ITLab CMake 4 / 28

Building simple main.cpp on Windows

Open the Command Prompt.

Navigate to the directory containing main.cpp.

If using MinGW:

g++ −o h e l l o . exe main . cpp
h e l l o . exe

If using Visual Studio Developer Command Prompt:

c l /EHsc main . cpp
main . exe

ITLab CMake 5 / 28

Simple library example

Assuming there is a simple library that contains a function add:

Listing 2: add.h
1 #ifndef ADD_H
2 #define ADD_H
3
4 int add(int x, int y);
5
6 #endif // ADD_H
7

Listing 3: add.cpp
1 #include "add.h"
2
3 int add(int x, int y) {
4 return x + y;
5 }
6

Listing 4: main.cpp
1 #include <iostream >
2 #include "add.h"
3
4 int main() {
5 int result = add(5, 3);
6 std::cout << "5 + 3 = " << result << std::endl;
7 return 0;
8 }
9

ITLab CMake 6 / 28

Building simple main.cpp with add library on UNIX

Compile add.cpp into an object file:

g++ −c add . cpp

Compile main.cpp into an object file:

g++ −c main . cpp

Link the object files into an executable:

g++ −o program main . o add . o

Run the executable:

. / program

ITLab CMake 7 / 28

Building simple main.cpp with add library on Windows

Using MinGW:

Compile add.cpp:

g++ −c add . cpp

Compile main.cpp:

g++ −c main . cpp

Link the object files:

g++ −o program . exe main . o add . o

Using Visual Studio Developer Command Prompt:

Compile and link:

c l /EHsc main . cpp add . cpp

Run the executable:

program . exe

ITLab CMake 8 / 28

Build systems

There are various build systems for different environments:

Make

Autoconf/Automake

CMake

Ninja

Meson

Bazel

ITLab CMake 9 / 28

Make

Traditional build tool using Makefiles.

Defines rules and dependencies for compiling code.

Widely used on UNIX systems.

Simple but can become complex for large projects.

ITLab CMake 10 / 28

Autoconf/Automake

Autoconf is the colution to automatically generate Makefiles.

Part of the GNU build system.

Generates portable Makefiles.

Handles platform-specific configurations.

Useful for open-source projects targeting multiple UNIX-like systems.

ITLab CMake 11 / 28

CMake

Cross-platform build system generator.

Generates native build files (Makefiles, Visual Studio solutions, etc.).

Supports complex project configurations.

Widely adopted in both open-source and commercial projects.

ITLab CMake 12 / 28

Ninja

Focused on speed and efficiency.

Uses a simple build file format.

Often used as a backend by higher-level build systems like CMake and
Meson.

Not intended to be written by hand.

ITLab CMake 13 / 28

Meson

High-level build system with a simple syntax.

Uses Ninja as its default backend.

Designed for fast and user-friendly builds.

Supports multiple programming languages.

ITLab CMake 14 / 28

Bazel

Developed by Google for large-scale projects.

Focuses on build correctness and reproducibility.

Supports multiple languages and platforms.

Uses a domain-specific language for build definitions.

ITLab CMake 15 / 28

Why CMake?

Cross-platform compatibility.

Generates native build systems.

Handles complex build requirements.

Strong community support and documentation.

Integrates well with IDEs and other tools.

ITLab CMake 16 / 28

Download CMake

Official website: https://cmake.org

Available for Windows, macOS, and Linux.

Installation via package managers:

On Ubuntu:

sudo apt−get i n s t a l l cmake

On macOS with Homebrew:

brew i n s t a l l cmake

ITLab CMake 17 / 28

https://cmake.org

CMake script for main.cpp with add library

CMakeLists.txt

cmake min imum requ i red (VERSION 3 . 0)
p r o j e c t (Hel loAdd)

a d d l i b r a r y (add add . cpp)
add e x e cu t ab l e (main main . cpp)
t a r g e t l i n k l i b r a r i e s (main add)

ITLab CMake 18 / 28

CMake configure and CMake build commands

Create a build directory:

mkdir b u i l d
cd b u i l d

Configure the project:

cmake . .

Build the project:

cmake −−b u i l d .

Run the executable:

. / main # On UNIX
main . exe # On Windows

ITLab CMake 19 / 28

CMake configure and CMake build commands

Usage of -S and -B is encouraged:

Configure the project:

cmake −S . −B bu i l d

Build the project:

cmake −−b u i l d b u i l d

Run the executable:

. / b u i l d /main # On UNIX
b u i l d /main . exe # On Windows

ITLab CMake 20 / 28

CMake configure

Confgure

Build

ITLab CMake 21 / 28

CMake configure

In a typical CMake-based build process, there are two primary stages: the
configure step and the build step.

Purpose: To inspect the system, check dependencies, and generate
platform-specific build files (like Makefile, ninja files, or Visual Studio
project files).

Outcome: After this step, the necessary files for building the project
are ready and platform-specific. The project isn’t compiled yet, but
CMake has configured everything based on the system environment,
the user options, and the project setup.

ITLab CMake 22 / 28

CMake configure (continued)

What Happens on CMake confguration stage?

CMakeLists.txt Processing: CMake reads the CMakeLists.txt files in your project.
This file describes how the project should be built, which dependencies are needed,
which source files to compile, etc.

Checking Dependencies: CMake will check for external libraries and dependencies,
ensuring they are installed and can be found (e.g., checking for required packages,
libraries).

Compiler and Toolchain Discovery: CMake will determine which compilers (e.g.,
GCC, Clang, MSVC) and toolchains to use based on the environment or user input.

Configuration Options: During this step, you can also pass configuration options
to CMake using the -D flag, which can influence how the project is built (e.g.,
enabling/disabling certain features or setting paths).

Build File Generation: CMake generates the actual build system files (like
Makefile, Ninja files, or Visual Studio solution files) in the output directory
(typically in a build/ folder). These files are specific to the build system chosen by
the user (e.g., Make, Ninja, MSBuild).

ITLab CMake 23 / 28

CMake build

The build step is where the actual compilation and linking take place.

Purpose: To compile the source code into binary executables, libraries,
or other artifacts based on the configuration done in the previous step.

Outcome: After this step, the output files (executables, libraries, etc.)
are created and are ready to be run or installed.

ITLab CMake 24 / 28

CMake build (continued)

What Happens on CMake build stage?

Calling Build System: The generated build files from the configure
step (like Makefile or ninja.build files) are invoked by CMake to
compile the code.

Compiling Source Code: The build system uses the appropriate
compiler to compile the source code into object files.

Linking: Once the object files are generated, the linker combines
them into final binaries (e.g., an executable or shared library).

Error/Warning Reporting: If there are any syntax errors, missing files,
or other issues, they will typically surface during this step, as the code
is actively being compiled.

Rebuilding: CMake build system will track changes to source files. If
you make changes to specific files and run the build step again, only
the modified files are recompiled (i.e., incremental builds).

ITLab CMake 25 / 28

CMake demo

Demo

ITLab CMake 26 / 28

Thank You!

ITLab CMake 27 / 28

References

1 CMake Download https://cmake.org/download/

2 CMake Tutorial
https://cmake.org/cmake/help/latest/guide/tutorial/index.html

3 An Introduction to Modern CMake
https://cliutils.gitlab.io/modern-cmake/README.html

ITLab CMake 28 / 28

https://cmake.org/download/
https://cmake.org/cmake/help/latest/guide/tutorial/index.html
https://cliutils.gitlab.io/modern-cmake/README.html

	Building C++ projects
	Build systems history
	CMake

