ARM Compute Library introduction

Nesterov Alexander, Obolenskiy Arseniy
ITLab

November 15, 2024

ITLab ARM Compute Library introduction 1/15

@ ARM Compute Library

© Build ACL

e Return to examples

e ACL operators

© ACL activation operator

@ Validate activation operator
@ Tensorlnfo for operators

@ Configure activation operator
© Tensor for operators

@ Run activation operator

@ Get ONNX model

ITLab ARM Compute Library introduction 2 /15

ARM Compute Library

arm COMPUTE LIBRARY

Compute Library m=mmmem

The Compute Library is a collection of low-level machine learning functions optimized for Arme Cortex®-A, Arm®
Neoverse® and Arm® Mali™ GPUs architectures.

The library provides superior performance to other open source alternatives and immediate support for new Arm@
technologies e.g. SVE2.

Key Features:

+ Open source software available under a permissive MIT license
« Over 100 machine learning functions for CPU and GPU

+ Multiple convolution algorithms (GeMM, Winograd, FFT, Direct and indirect-GeMM)

+ Support for multiple data types: FP32, FP16, INT8, UINTS, BFLOAT16

+ Micro-architecture optimization for key ML primitives

+ Highly configurable build options enabling lightweight binaries

« Advanced optimization techniques such as kernel fusion, Fast math enablement and texture utilization
+ Device and workload specific tuning using OpenCL tuner and GeMM optimized heuristics

Repository Link

Release https://github.com/arm-soft mputeLibrar

Development https://review.miplatform.org/#/admin/projects/ml/ComputeLibrar

Source: https://github.com/ARM-software/ComputeLibrary

ITLab ARM Compute Library

https://github.com/ARM-software/ComputeLibrary

Supported Architectures/Technologies

Supported Architectures/Technologies

¢ Arm® CPUs:

o Arm@ Cortex®-A processor family using Arm® Neon™ technology

o Arm® Neoverse® processor family

o Arm@ Cortex®-R processor family with Armv8-R AArch64 architecture using Arm® Neon™ technology
o Arm® Cortex®-X1 processor using Arm® Neon™ technology

* Arm@® Mali™ GPUs:

o Arm® Mali™-G processor family
° Arm® Mali™-T processor family

* x86

Source: https://github.com/ARM-software/ComputeLibrary

ITLab ARM Compute Library introduction

https://github.com/ARM-software/ComputeLibrary

Supported Systems

Supported Systems

¢ Android™
Bare Metal

e Linux®
OpenBSD®
e macOSe®

e Tizen™

Source: https://github.com/ARM-software/ComputeLibrary

ITLab ARM Compute Library introduction 5/15

https://github.com/ARM-software/ComputeLibrary

Build ACL

Building for macOS
To natively compile the library with accelerated CPU support:

scons Werror=1 -j8 neon=1 opencl=@0 os=macos arch=armv8.2-a build=native

nesteruv@akleinma—mobl ACL %
nesterov@gkleinma-mobl ACL % scons Werror=1 -j18 neon=1 opencl=8 os=macos arch=armv8.2-a build=native examples=

Source:
https://artificial-intelligence.sites.arm.com /computelibrary /latest /how_to_build.xhtml

ITLab ARM Compute Library introduction

https://artificial-intelligence.sites.arm.com/computelibrary/latest/how_to_build.xhtml

Return to examples

Convolution

1x64x32x100

RelU

1x64=32x100

Source: docs.openvino.ai

ITLab ARM Compute Library introduction

https://docs.openvino.ai/

ACL operators

Supported Operators

Supported Operators
Compute Library supports operators that are listed in below table.
Compute Library supports a wide list of data-types, information can been directly found in the documentation of each kernel/function. The main data-types that the Machine Leaming functions support are the following

« BFLOAT16: 16-bit non-standard brain floating point
+ QASYMMS8: 8-bit unsigned asymmetric quantized

« QASYMMB_SIGNED: 8-bit signed asymmetric quantized

+ QSYMM8_PER_CHANNEL: 8-bit signed symmetric quantized (Used for the weights)
« QSYMM8: 8-bit unsigned symmetric quantized

+ QSYMM16: 16-bit unsigned symmetric quantized

« F32: 32:bit single precision floating point

+ F16: 16-bit half precision floating point

« 532 32-bit signed integer

+ UB8: 8-bit unsigned char

« All: Agnostic to any specific data type

Gompute Library supports the following data layouts (fast changing dimension from right to left):

+ NHWC: The native layout of Compute Library that delivers the best performance where channels are in the fastest changing dimension
« NCHW: Legacy layout where widih is in the fastest changing dimension

+ NDHWC: New data layout for supporting 3D operators

« All: Agnostic to any specific data layout

where N = batches, C = channels, H = height, W = width, D = depth

Source:
https://artificial-intelligence.sites.arm.com /computelibrary/latest /operators_list.xhtml

ITLab ARM Compute Library introduction 8

https://artificial-intelligence.sites.arm.com/computelibrary/latest/operators_list.xhtml

ACL activation operator

Function Description Equivalent Android NNAPI Op Data Layouts
QAsYMME QAsYMMs
QASYMM8_SIGNED | QASYMMSB_SIGNED
NEActivationLayer oAl
+ ANEURALNETWORKS_ELU asmne asvie
+ ANEURALNETWORKS_HARD_SWISH FD 16]
Function to simulate an ANEURALNETWORKS_LOGISTIC Fa2 F32
Activationt ayer activation layer with the + ANEURALNETWORKS_RELU
specified activation function. + ANEURALNETWORKS_RELU1
+ ANEURALNETWORKS_RELUS AT SIS
« ANEURALNETWORKS_TANH
QASYMM8_SIGNED | QASYMMSB_SIGNED
ClActivationLayer oA
QsYMM16 QsYMM1s
F16 F16
Fa2 F32

https://artificial-intelligence.sites.arm.com /computelibrary/latest /operators_list.xhtml

ITLab

introduction

https://artificial-intelligence.sites.arm.com/computelibrary/latest/operators_list.xhtml

Validate activation operator

«+ validate()

static Status validate (const ITensorinfo * input,
const ITensorinfo * output,
const ActivationLayerinfo & act info
)
[NEActivationLayer snippet]
Static function to check f given info will lead to a valid configuration of NEActivationLayer

Parameters

[in] input Source tensor info. In case of output tensor info = nullptr, this tensor will store the result of the activation function. Data types supported: QASYMMB/QASYMMB_SIGNED/QSYMM16/F16/F32.
[in] output Destination tensor info. Data type supported: same as input

[in] act_info Activation layer information.

Returns
astatus

Source: Description of activation operator

ARM Compute Library introduction

https://artificial-intelligence.sites.arm.com/computelibrary/latest/classarm__compute_1_1_n_e_activation_layer.xhtml

TensorlInfo for operators

. Tensorlnfo() [10/11]

Tensorinfo (const TensorShape & tensor_shape,

size_t num_channels,
DataType data_type,
DataLayout data_layout
)
Constructor.
Parameters

[in] tensor_shape It specifies the size for each dimension of the tensor in number of elements.
[in] num_channels It indicates the number of channels for each tensor element
[in] data_type Data type to use for each tensor element

[in] data_layout The data layout setting for the tensor data.

Source: Description of Tensorlnfo

ITLab ARM Compute Library introduction

https://artificial-intelligence.sites.arm.com/computelibrary/latest/classarm__compute_1_1_tensor_info.xhtml

Configure activation operato

+ configure()

void configure (ITensor * input,
ITensor * output,
ActivationLayerinfo activation_info

)

[NEActivationLayer snippet]

Set the input and output tensor.

Valid data layouts:

* Al

Valid data type configurations:

QASYMM8 QASYMMS
QASYMM8_SIGNED | QASYMMS_SIGNED
QSYMM16 QsYMM16
F16 F16
F32 F32

Note

If the output tensor is a nullptr or is equal to the input, the activation function will be performed in-place
Parameters

[in, out] input Source tensor. In case of output tensor = nullptr, this tensor will store the result of the activation function. Data types supported: QASYMM8/QASYMMB_SIGNED/QSYMM16/F16/F32.
Destination tensor. Data type supported: same as input

[in] activation info Activation layer parameters.

fout] output

Source: Description of activation operator

ARM Compute Library

https://artificial-intelligence.sites.arm.com/computelibrary/latest/classarm__compute_1_1_n_e_activation_layer.xhtml

Tensor for operators

Public Member Functions

Tensor &

TensorAllocator *

ITensorinfo *

ITensorinfo *

uint8_t *

void

Tensor (IRuntimeContext *ctx=nullptr)
Constructor. More...

~Tensor ()=default

Destructor: free the tensor's memory. More...

Tensor (Tensor &&)=default

Allow instances of this class to be move constructed. More...

operator= (Tensor &&)=default

Allow instances of this class to be moved. More...

allocator ()

Return a pointer to the tensor's allocator. More...

info () const override

Interface to be implemented by the child class to return the tensor's metadata. More...
info () override

Interface to be implemented by the child class to return the tensor's metadata. More...
buffer () const override

Interface to be implemented by the child class to return a pointer to CPU memory. More...
associate_memory_group (IMemoryGroup *memory_group) override

Associates a memory managable object with the memory group that manages it. More...

Source: Description of Tensor

ARM Compute Library introduction

https://artificial-intelligence.sites.arm.com/computelibrary/latest/classarm__compute_1_1_tensor.xhtml

activation operator

«run()

void run ()

Run the kernels contained in the function.
For CPU kernels:

« Multi-threading is used for the kernels which are parallelisable.
« By default std::thread::hardware_concurrency() threads are used.

Note

CP 2:set_num_| () can be used to manually set the number of threads
For OpenCL kernels:

« All the kernels are enqueued on the queue associated with CLScheduler.
« The queue is then flushed.

Note
The function will not block until the kernels are executed. It is the user's responsibility to wait.

Will call prepare() on first run if hasn't been done

Implements IFunction.

Source: Description of activation operator

ARM Compute Library introduction

https://artificial-intelligence.sites.arm.com/computelibrary/latest/classarm__compute_1_1_n_e_activation_layer.xhtml

Get ONNX model

B Usage

Python CLI

from ultralytics import YOLO

Load the YOLO11 model
model = YOLO("yolollin.pt")

Export the model to ONNX format
model.export(format="onnx") # creates 'yololln.onnx'

Load the exported ONNX model
onnx_model = YOLO("yolol1n.onnx")

Run inference
results = onnx_model("https://ultralytics.com/images/bus.jpg")

Source: https://docs.ultralytics.com/integrations/onnx/

ARM Compute Library introduction

https://docs.ultralytics.com/integrations/onnx/

	ARM Compute Library
	Build ACL
	Return to examples
	ACL operators
	ACL activation operator
	Validate activation operator
	TensorInfo for operators
	Configure activation operator
	Tensor for operators
	Run activation operator
	Get ONNX model

