OpenVINO introduction

Obolenskiy Arseniy, Nesterov Alexander
ITLab

December 4, 2025

ITLab OpenVINO introduction 1/28

© Overview

© OpenVINO Network Intermediate Representation
© API Examples

@ Tools and Benchmarks

© GenAl with OpenVINO

@ Getting OpenVINO

e References

ITLab OpenVINO introduction 2/28

ITLab

Overview

OpenVINO introduction

What is OpenVINO?

OpenVINO (Open Visual Inference and Neural @penV|N@
Network Optimization) is a toolkit developed by

Intel for optimizing and deploying deep learning
models for inference on Intel and other vendors
hardware. It provides a unified APl and a set of
tools to streamline the process of model
optimization, conversion, and deployment across
various Intel architectures.

ITLab OpenVINO introduction 4 /28

OpenVINO at a Glance

@ Purpose: Optimize and deploy Al inference across CPUs (x86, ARM,
RISC-V), GPUs, NPUs, and other accelerators

e Core components: Runtime (Inference Engine), Plugins (Targets),
Frontends

e Model formats (Frontends): IR (.xml/.bin), ONNX (.onnx),
TensorFlow (SavedModel/MetaGraph/frozen .pb/.pbtxt),
TensorFlow Lite (.tflite), PaddlePaddle (.pdmodel), PyTorch
(TorchScript/FX .pt/.pth)

e Targets: CPU, GPU (e.g., Intel Arc), NPU, and more via plugins

o Key benefits: Performance, portability, unified API, quantization
(INT8), easy deployment

Reference: docs.openvino.ai

OpenVINO introduction

https://docs.openvino.ai/

Overview Diagram

O PyTorch F TensorFlow " TensorFlowLite 33 PaddePasde () ONNX [Keras o 5

L4

v

OpenVIN®

Optimized Performance

¢

intel intel Intel intel
ATOM | CORE | CORE:: | XeON
ULTRA

BB Windows 11 Linux macOS

intel

IR|S><e

FPGA

Al Suite’ /41

Source: https://docs.openvino.ai/2025/index.html

OpenVINO introduction

https://docs.openvino.ai/2025/_images/openvino-overview-diagram.jpg

Workflow Overview

1 Model |} 2 Optimize [, 3 Deploy

=(72") Model Converter for OpenVINO™

OpenVINO Model Server
Converta rained madel fom supported rameorks. 1 Senemodesover oRPC,REST, or C APl endponts
) Read. foad. infer
© =% S =1 OpenVINO format (ntermedita reprosentation OpenVINO Runtime
B [ORIO 2 flepb, tite, onne) S v, Car
o ach ofthe folowing devices:
v

el A
g 1 . 5 xeon | core
() pyTorch F TensorFlow . =7
h = and PyTorch*
Anopionto skipsteps o get o deployment fster.
95 raarsse € ONNX Keras

inte intel
ARC [IRES
S, Model Compression with NNCF o< B

EE Industry Model Zoos ! Neursl Network Compression Frarmenork (NNCF) provides
[N#]
D

with postiaiing optimization
Huaging Face, TensorFlow, Keras, PyTorch, PaddlePadcle, anct
ONNXpretraned models

ST JupvterNotebaok
7% Optimum® for Intel =

- " into procuction faster
Use OpenVINO™ ookt as an extension n Hugaing Face* transforrer =

intel ceTi

Source: https://www.intel.com/content/www/us/en/developer/tools/openvino-
toolkit/overview.html

ITLab OpenVINO introduction

https://www.intel.com/content/www/us/en/developer/tools/openvino-toolkit/overview.html
https://www.intel.com/content/www/us/en/developer/tools/openvino-toolkit/overview.html

Device Plugins Architecture

Application (C/C++, Python, Java,
JavaScript)

I
OpenVINO Runtime (ov: :Core)

4
Plugin Dispatcher (AUTO / MULTI /
HETERO)
4
CPU GPU NPU

Examples: CPU, GPU.O, NPU, AUTO:CPU,GPU, MULTI:GPU,CPU, HETERO:GPU, CPU

ITLab OpenVINO introduction 8 /28

Device Plugin Details

@ CPU: High compatibility and strong baseline performance; uses
optimized kernels (e.g., oneDNN). Supports FP32/FP16/INT8 with
quantized models.

e GPU: Integrated and discrete Intel GPUs via Level Zero/OpenCL,
delivering strong FP16 and INT8 throughput and benefiting from
device-specific kernels and memory bandwidth.

e NPU: Intel NPU (e.g., Core Ultra) for efficient, low-power inference
on common vision/LLM ops; ideal for always-on and battery-sensitive
workloads.

o TEMPLATE plugin: Reference backend for building custom device
plugins; demonstrates the plugin API (compiled model, infer request,
op support, memory) and is useful for prototyping.

See: https://docs.openvino.ai/2025/documentation/compatibility-and-
support/supported-devices.html — Supported devices

ITLab OpenVINO introduction 9 /28

https://docs.openvino.ai/2025/documentation/compatibility-and-support/supported-devices.html
https://docs.openvino.ai/2025/documentation/compatibility-and-support/supported-devices.html
https://docs.openvino.ai/2025/openvino_docs_OV_UG_supported_plugins_Supported_Devices.html

Inference Modes

@ AUTO plugin: Chooses the “best” device available at runtime; can
constrain candidates, e.g., AUTO:GPU, CPU.

@ MULTI plugin: Executes across multiple devices in parallel to
maximize throughput, e.g., MULTI:GPU,CPU.

e HETERO plugin: Splits a single graph by layer/op support across
devices, e.g., heavy ops on GPU, fallbacks on CPU.

See: https://docs.openvino.ai/2025/openvino-workflow/running-inference/inference-
devices-and-modes.html — Inference Devices and Modes

OpenVINO introduction

https://docs.openvino.ai/2025/openvino-workflow/running-inference/inference-devices-and-modes.html
https://docs.openvino.ai/2025/openvino-workflow/running-inference/inference-devices-and-modes.html
https://docs.openvino.ai/2025/openvino_docs_OV_UG_supported_plugins_Supported_Devices.html

OpenVINO Network Intermediate
Representation

OpenVINO introduction

What is OpenVINO IR?

e IR (Intermediate Representation) is OpenVINO's graph format
used by the runtime for efficient inference.

@ A model is stored as two files: model.xml (network topology, layers,
attributes) and model.bin (weights).

@ IR is framework-agnostic: models from PyTorch, TensorFlow, ONNX,
and others are converted into a unified format.

@ The same IR can be executed on different devices (CPU, GPU, NPU,
etc.) via plugins without changing the model itself.

OpenVINO introduction

IR Structure and Benefits

o Graph of operations (nodes) and tensors (edges) with explicit input /
output shapes and data types.

@ Uses OpenVINO operation sets (opsets) that define supported ops
and attributes for compatibility across versions.

@ Enables offline optimizations such as constant folding, layout changes,
precision conversions (FP32 — FP16/INTS).

@ Portable artifact for CI/CD workflows: generate IR once, then deploy
to multiple targets (cloud, edge, embedded) with the same files.

OpenVINO introduction

APl Examples

ITLab OpenVINO introduction 14 / 28

Language Frontends

o C++: primary, feature-complete API for production workloads and
samples; direct access to ov: :Core and low-level controls.

o C: lightweight C wrapper for integrating OpenVINO into C-only or
legacy codebases.

e Python: high-level API (openvino, openvino.runtime) for rapid
prototyping, notebooks, and integration with the Python ML
ecosystem.

e Java (contrib, optional): bindings for JVM-based services and
desktop apps, suitable for server-side inference pipelines.

e JavaScript: Web and Node.js frontends (via WebAssembly and
native addons) for running inference in browsers or JS backends.

See: https://docs.openvino.ai/2025/api/api_reference.html

OpenVINO introduction

https://docs.openvino.ai/2025/api/api_reference.html

Python APl Example O-style Model)

@ Goal: Run object detection with a YOLO-like model using
OpenVINO Runtime

@ Code sketch

import openvino as ov

core = ov.Core()

model = core.read_model("yolo.xml")

compiled = core.compile_model (model, "AUTO0")
infer_request = compiled.create_infer_request()
infer_request.set_tensor(input_name, image_tensor)
infer_request.infer()

output = infer_request.get_tensor(output_name)

OpenVINO introduction

C++ API Example (YOLO-style Model)

@ Goal: Same pipeline in C++ with ov: :Core
o Code sketch

#include <openvino/openvino.hpp>
int main(int argc, charx argv[]) {

ov::Core core;

auto model = core.read_model("yolo.xml");

auto compiled = core.compile_model(model, "AUTO");
auto infer_request = compiled.create_infer_request();
infer_request.set_tensor(input_port, input_tensor);
infer_request.infer();

auto output = infer_request.get_tensor (output_port);

ITLab OpenVINO introduction

N

@

Tools and Benchmarks

OpenVINO introduction

Brief Tools Overview

e benchmark_app: measures latency / throughput on target devices

@ OpenVINO Notebooks: interactive tutorials for many models
(YOLO, SSD, Segmentation, LLMs)
https://github.com/openvinotoolkit/openvino_notebooks

OpenVINO introduction

https://github.com/openvinotoolkit/openvino_notebooks

benchmark_app Usage Examples

@ Basic run on CPU
o benchmark_app -m yolo.xml -d CPU
@ Run on GPU with async API
o benchmark_app -m yolo.xml -d GPU -api async
o Use AUTO plugin and prioritize throughput
o benchmark_app -m yolo.xml -d AUTO -hint throughput
o What to look at
e Latency, FPS, device utilization, batch size, number of streams

See: https://docs.openvino.ai/nightly/get-started /learn-openvino/openvino-
samples/benchmark-tool.html

OpenVINO introduction

https://docs.openvino.ai/nightly/get-started/learn-openvino/openvino-samples/benchmark-tool.html
https://docs.openvino.ai/nightly/get-started/learn-openvino/openvino-samples/benchmark-tool.html

GenAl with OpenVINO

OpenVINO introduction

OpenVINO GenAl

o Target use cases: chatbots, code assistants, summarization, RAG
pipelines, text-to-image / image editing with diffusion models
e Model types: LLMs (decoder-only, encoder-decoder),

vision-language models, diffusion models; integration with Hugging
Face and ONNX model zoo

e Optimizations: 8-bit / 4-bit quantization, weight compression,
low-rank adapters (LoRA), CPU/GPU-specific graph optimizations for
lower latency

e Deployment: Python/C++ APIs, OpenVINO GenAl APlIs,
notebooks and samples for serving models locally or in containers

e Resources: https://github.com/openvinotoolkit/openvino.genai,
https://docs.openvino.ai/2025/openvino-workflow-
generative/inference-with-genai.html

ITLab OpenVINO introduction

N
N
N
@

https://github.com/openvinotoolkit/openvino.genai
https://docs.openvino.ai/2025/openvino-workflow-generative/inference-with-genai.html
https://docs.openvino.ai/2025/openvino-workflow-generative/inference-with-genai.html

GenAl Workflow Diagram

input

p—
model path 1 ~
https://huggingface.co v
@ openyiNO™ el @ CpenvivO™ Auntine
p—
-
hitps://huggingface.co/OpenVINO l
Source:

https://docs.openvino.ai/2025 /openvino-workflow-generative /inference-with-genai.html

OpenVINO introduction

https://docs.openvino.ai/2025/_images/genai_main_diagram.svg

Getting OpenVINO

OpenVINO introduction

Installing OpenVINO (User)

@ Use prebuilt packages from Intel:
o Linux: pip install openvino (Python API + tools)

o Windows: pip install openvino or installer from Intel website

o (Optional) Create isolated environment:

e python -m venv venv
source venv/bin/activate (Linux/macOS)
venv\Scripts\activate (Windows)

o Verify installation in Python:

import openvino as ov
print(ov.__version__)

@ Check available devices:

core = ov.Core()
print(core.get_available_devices())

OpenVINO introduction

https://www.intel.com/content/www/us/en/developer/tools/openvino-toolkit/download.html

Building OpenVINO (Developer)

Build from source (advanced):
https://github.com /openvinotoolkit/openvino/blob/master/docs/dev/build.r

@ Clone sources:

git clone https://github.com/openvinotoolkit/openvino.git --recurse
-submodules
cd openvino

o Install build dependencies (compiler, CMake, Python, git)
e Configure build directory:

cmake -S . -B build -DCMAKE_BUILD_TYPE=Release -DENABLE_PYTHON=0ON -
DENABLE_TESTS=0N

Note: the full cmake flags reference can be found in the
documentation
@ Build and run tests:

cmake --build build --parallel

OpenVINO introduction

https://github.com/openvinotoolkit/openvino/blob/master/docs/dev/build.md

References

OpenVINO introduction

References

@ OpenVINO Official documentation: https://docs.openvino.ai/
@ OpenVINO repository: https://github.com/openvinotoolkit/openvino

@ OpenVINO Contrib:
https://github.com /openvinotoolkit/openvino_contrib

@ OpenVINO Notebooks:
https://github.com /openvinotoolkit/openvino_notebooks

@ OpenVINO GenAl project:
https://github.com/openvinotoolkit/openvino.genai

OpenVINO introduction

https://docs.openvino.ai/
https://github.com/openvinotoolkit/openvino
https://github.com/openvinotoolkit/openvino_contrib
https://github.com/openvinotoolkit/openvino_notebooks
https://github.com/openvinotoolkit/openvino.genai

	Overview
	OpenVINO Network Intermediate Representation
	API Examples
	Tools and Benchmarks
	GenAI with OpenVINO
	Getting OpenVINO
	References

