
OpenVINO introduction

Obolenskiy Arseniy, Nesterov Alexander

ITLab

December 4, 2025

ITLab OpenVINO introduction 1 / 28



Contents

1 Overview

2 OpenVINO Network Intermediate Representation

3 API Examples

4 Tools and Benchmarks

5 GenAI with OpenVINO

6 Getting OpenVINO

7 References

ITLab OpenVINO introduction 2 / 28



Overview

ITLab OpenVINO introduction 3 / 28



What is OpenVINO?

OpenVINO (Open Visual Inference and Neural
Network Optimization) is a toolkit developed by
Intel for optimizing and deploying deep learning
models for inference on Intel and other vendors
hardware. It provides a unified API and a set of
tools to streamline the process of model
optimization, conversion, and deployment across
various Intel architectures.

ITLab OpenVINO introduction 4 / 28



OpenVINO at a Glance

Purpose: Optimize and deploy AI inference across CPUs (x86, ARM,
RISC-V), GPUs, NPUs, and other accelerators

Core components: Runtime (Inference Engine), Plugins (Targets),
Frontends

Model formats (Frontends): IR (.xml/.bin), ONNX (.onnx),
TensorFlow (SavedModel/MetaGraph/frozen .pb/.pbtxt),
TensorFlow Lite (.tflite), PaddlePaddle (.pdmodel), PyTorch
(TorchScript/FX .pt/.pth)

Targets: CPU, GPU (e.g., Intel Arc), NPU, and more via plugins

Key benefits: Performance, portability, unified API, quantization
(INT8), easy deployment

Reference: docs.openvino.ai

ITLab OpenVINO introduction 5 / 28

https://docs.openvino.ai/


Overview Diagram

Source: https://docs.openvino.ai/2025/index.html

ITLab OpenVINO introduction 6 / 28

https://docs.openvino.ai/2025/_images/openvino-overview-diagram.jpg


Workflow Overview

Source: https://www.intel.com/content/www/us/en/developer/tools/openvino-
toolkit/overview.html

ITLab OpenVINO introduction 7 / 28

https://www.intel.com/content/www/us/en/developer/tools/openvino-toolkit/overview.html
https://www.intel.com/content/www/us/en/developer/tools/openvino-toolkit/overview.html


Device Plugins Architecture

Application (C/C++, Python, Java,
JavaScript)

⇓

OpenVINO Runtime (ov::Core)

⇓
Plugin Dispatcher (AUTO / MULTI /

HETERO)

⇓

CPU GPU NPU

Examples: CPU, GPU.0, NPU, AUTO:CPU,GPU, MULTI:GPU,CPU, HETERO:GPU,CPU

ITLab OpenVINO introduction 8 / 28



Device Plugin Details

CPU: High compatibility and strong baseline performance; uses
optimized kernels (e.g., oneDNN). Supports FP32/FP16/INT8 with
quantized models.

GPU: Integrated and discrete Intel GPUs via Level Zero/OpenCL,
delivering strong FP16 and INT8 throughput and benefiting from
device-specific kernels and memory bandwidth.

NPU: Intel NPU (e.g., Core Ultra) for efficient, low-power inference
on common vision/LLM ops; ideal for always-on and battery-sensitive
workloads.

TEMPLATE plugin: Reference backend for building custom device
plugins; demonstrates the plugin API (compiled model, infer request,
op support, memory) and is useful for prototyping.

See: https://docs.openvino.ai/2025/documentation/compatibility-and-
support/supported-devices.html — Supported devices

ITLab OpenVINO introduction 9 / 28

https://docs.openvino.ai/2025/documentation/compatibility-and-support/supported-devices.html
https://docs.openvino.ai/2025/documentation/compatibility-and-support/supported-devices.html
https://docs.openvino.ai/2025/openvino_docs_OV_UG_supported_plugins_Supported_Devices.html


Inference Modes

AUTO plugin: Chooses the “best” device available at runtime; can
constrain candidates, e.g., AUTO:GPU,CPU.

MULTI plugin: Executes across multiple devices in parallel to
maximize throughput, e.g., MULTI:GPU,CPU.

HETERO plugin: Splits a single graph by layer/op support across
devices, e.g., heavy ops on GPU, fallbacks on CPU.

See: https://docs.openvino.ai/2025/openvino-workflow/running-inference/inference-
devices-and-modes.html — Inference Devices and Modes

ITLab OpenVINO introduction 10 / 28

https://docs.openvino.ai/2025/openvino-workflow/running-inference/inference-devices-and-modes.html
https://docs.openvino.ai/2025/openvino-workflow/running-inference/inference-devices-and-modes.html
https://docs.openvino.ai/2025/openvino_docs_OV_UG_supported_plugins_Supported_Devices.html


OpenVINO Network Intermediate
Representation

ITLab OpenVINO introduction 11 / 28



What is OpenVINO IR?

IR (Intermediate Representation) is OpenVINO’s graph format
used by the runtime for efficient inference.

A model is stored as two files: model.xml (network topology, layers,
attributes) and model.bin (weights).

IR is framework-agnostic: models from PyTorch, TensorFlow, ONNX,
and others are converted into a unified format.

The same IR can be executed on different devices (CPU, GPU, NPU,
etc.) via plugins without changing the model itself.

ITLab OpenVINO introduction 12 / 28



IR Structure and Benefits

Graph of operations (nodes) and tensors (edges) with explicit input /
output shapes and data types.

Uses OpenVINO operation sets (opsets) that define supported ops
and attributes for compatibility across versions.

Enables offline optimizations such as constant folding, layout changes,
precision conversions (FP32 → FP16/INT8).

Portable artifact for CI/CD workflows: generate IR once, then deploy
to multiple targets (cloud, edge, embedded) with the same files.

ITLab OpenVINO introduction 13 / 28



API Examples

ITLab OpenVINO introduction 14 / 28



Language Frontends

C++: primary, feature-complete API for production workloads and
samples; direct access to ov::Core and low-level controls.

C: lightweight C wrapper for integrating OpenVINO into C-only or
legacy codebases.

Python: high-level API (openvino, openvino.runtime) for rapid
prototyping, notebooks, and integration with the Python ML
ecosystem.

Java (contrib, optional): bindings for JVM-based services and
desktop apps, suitable for server-side inference pipelines.

JavaScript: Web and Node.js frontends (via WebAssembly and
native addons) for running inference in browsers or JS backends.

See: https://docs.openvino.ai/2025/api/api reference.html

ITLab OpenVINO introduction 15 / 28

https://docs.openvino.ai/2025/api/api_reference.html


Python API Example (YOLO-style Model)

Goal: Run object detection with a YOLO-like model using
OpenVINO Runtime

Code sketch

import openvino as ov

core = ov.Core()

model = core.read_model("yolo.xml")

compiled = core.compile_model(model, "AUTO")

infer_request = compiled.create_infer_request()

infer_request.set_tensor(input_name, image_tensor)

infer_request.infer()

output = infer_request.get_tensor(output_name)

ITLab OpenVINO introduction 16 / 28



C++ API Example (YOLO-style Model)

Goal: Same pipeline in C++ with ov::Core

Code sketch

#include <openvino/openvino.hpp>

int main(int argc, char* argv[]) {

...

ov::Core core;

auto model = core.read_model("yolo.xml");

auto compiled = core.compile_model(model, "AUTO");

auto infer_request = compiled.create_infer_request();

infer_request.set_tensor(input_port, input_tensor);

infer_request.infer();

auto output = infer_request.get_tensor(output_port);

...

}

ITLab OpenVINO introduction 17 / 28



Tools and Benchmarks

ITLab OpenVINO introduction 18 / 28



Brief Tools Overview

benchmark app: measures latency / throughput on target devices

OpenVINO Notebooks: interactive tutorials for many models
(YOLO, SSD, Segmentation, LLMs)
https://github.com/openvinotoolkit/openvino notebooks

ITLab OpenVINO introduction 19 / 28

https://github.com/openvinotoolkit/openvino_notebooks


benchmark app Usage Examples

Basic run on CPU
benchmark app -m yolo.xml -d CPU

Run on GPU with async API
benchmark app -m yolo.xml -d GPU -api async

Use AUTO plugin and prioritize throughput
benchmark app -m yolo.xml -d AUTO -hint throughput

What to look at
Latency, FPS, device utilization, batch size, number of streams

See: https://docs.openvino.ai/nightly/get-started/learn-openvino/openvino-
samples/benchmark-tool.html

ITLab OpenVINO introduction 20 / 28

https://docs.openvino.ai/nightly/get-started/learn-openvino/openvino-samples/benchmark-tool.html
https://docs.openvino.ai/nightly/get-started/learn-openvino/openvino-samples/benchmark-tool.html


GenAI with OpenVINO

ITLab OpenVINO introduction 21 / 28



OpenVINO GenAI

Target use cases: chatbots, code assistants, summarization, RAG
pipelines, text-to-image / image editing with diffusion models

Model types: LLMs (decoder-only, encoder-decoder),
vision-language models, diffusion models; integration with Hugging
Face and ONNX model zoo

Optimizations: 8-bit / 4-bit quantization, weight compression,
low-rank adapters (LoRA), CPU/GPU-specific graph optimizations for
lower latency

Deployment: Python/C++ APIs, OpenVINO GenAI APIs,
notebooks and samples for serving models locally or in containers

Resources: https://github.com/openvinotoolkit/openvino.genai,
https://docs.openvino.ai/2025/openvino-workflow-
generative/inference-with-genai.html

ITLab OpenVINO introduction 22 / 28

https://github.com/openvinotoolkit/openvino.genai
https://docs.openvino.ai/2025/openvino-workflow-generative/inference-with-genai.html
https://docs.openvino.ai/2025/openvino-workflow-generative/inference-with-genai.html


GenAI Workflow Diagram

Source:
https://docs.openvino.ai/2025/openvino-workflow-generative/inference-with-genai.html

ITLab OpenVINO introduction 23 / 28

https://docs.openvino.ai/2025/_images/genai_main_diagram.svg


Getting OpenVINO

ITLab OpenVINO introduction 24 / 28



Installing OpenVINO (User)

Use prebuilt packages from Intel:

Linux: pip install openvino (Python API + tools)
Windows: pip install openvino or installer from Intel website

(Optional) Create isolated environment:

python -m venv venv

source venv/bin/activate (Linux/macOS)
venv\Scripts\activate (Windows)

Verify installation in Python:

import openvino as ov

print(ov.__version__)

Check available devices:

core = ov.Core()

print(core.get_available_devices())

ITLab OpenVINO introduction 25 / 28

https://www.intel.com/content/www/us/en/developer/tools/openvino-toolkit/download.html


Building OpenVINO (Developer)

Build from source (advanced):
https://github.com/openvinotoolkit/openvino/blob/master/docs/dev/build.md

Clone sources:

git clone https://github.com/openvinotoolkit/openvino.git --recurse

-submodules

cd openvino

Install build dependencies (compiler, CMake, Python, git)
Configure build directory:

cmake -S . -B build -DCMAKE_BUILD_TYPE=Release -DENABLE_PYTHON=ON -

DENABLE_TESTS=ON

Note: the full cmake flags reference can be found in the
documentation
Build and run tests:

cmake --build build --parallel
ITLab OpenVINO introduction 26 / 28

https://github.com/openvinotoolkit/openvino/blob/master/docs/dev/build.md


References

ITLab OpenVINO introduction 27 / 28



References

OpenVINO Official documentation: https://docs.openvino.ai/

OpenVINO repository: https://github.com/openvinotoolkit/openvino

OpenVINO Contrib:
https://github.com/openvinotoolkit/openvino contrib

OpenVINO Notebooks:
https://github.com/openvinotoolkit/openvino notebooks

OpenVINO GenAI project:
https://github.com/openvinotoolkit/openvino.genai

ITLab OpenVINO introduction 28 / 28

https://docs.openvino.ai/
https://github.com/openvinotoolkit/openvino
https://github.com/openvinotoolkit/openvino_contrib
https://github.com/openvinotoolkit/openvino_notebooks
https://github.com/openvinotoolkit/openvino.genai

	Overview
	OpenVINO Network Intermediate Representation
	API Examples
	Tools and Benchmarks
	GenAI with OpenVINO
	Getting OpenVINO
	References

